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THE NMC SPECTRAL MODEL

Joseph G. Sela
National Weather Service, National Meteorological Center, NOAA
Camp Springs, MD

ABSTRACT. A model with spectral representation in the
horizontal and Arakawa quadratic conserving finite dif-
ferencing in the vertical is described. The model
includes a moisture cycle consisting of large-scale
condensation processes, as well as a convective para-
meterization. Interactions with the underlying oceans
i{nclude evaporation and sensible heating. Orography
and surface frictlon are modeled and a semi~implicit
time integration 1s employed. Machenhauer's normal
modes initialization method is applied.

1. INTRODUCTION

This report is a documentatlon of the Spectral Model currently in
operation at NMC in the Data Assimilation Final Cycle and the Large
Scale forecast cycle. The report 1s divided into four sectlons, the
first of which 1is thils introduction.

In section 2 the model formulation is described and the equations
governing the history variables are derlved. Appendix A is included for
reference to the Arakawa vertical finite differencing scheme used in the
model's formulation.

Section 3 deals with spectral aspects of the model's equations. The
reader may wish to refer to Appendix B for additional details concerning
the transform technique as well as some information regarding the Hough
functions to spherical harmonilc conversion.

Section 4 describes the implementation of the Machenhauer nonlinear
normal modes initialization as presently applied to the sigma input
data. A more complete exposition of initialization problems and tech-
niques can be found in Ballish (1980).

The development of a Spectral Model at NMC evolved from Numerical
Weather Prediction experience using the Seven Layer PE grid point model,
Shuman and Hovermale (1968); the Limited Area Fine Mesh model, Gerrity
(1977): and experiments In spectral techniques by Bourke (1974).

During the initial model development stages the question of the
spectral resolution needed for operational quality forecasts was not
resolved. To permit flexibility in addressing this question the model
was designed and coded in very general terms. Generalized codes were
especially useful in subsequent experiments regarding an operational
global medium range forecast system and in transporting the model to
other computer installations possessing different computing capabilities.




The results of numerous resolution experiments led to twe basic
versions of 24 and 30 waves in a rhomboidal expansion, depicted in filgure
5, now used at NMC. The Spectral Model can be executed with an arbitrary
resolution, but the above two are better optimized. The rhomboidal
truncation was chosen to permit higher meridional resolution of larger
scale disturbances. It was recognlzed that the rotational invariance
property found in a triangular truncation would be lost, but this property
is never invoked in the formulation or computer implementation.

The vertical resolution now in use consists of twelve layers for
the 84-hr forecast period, diminishing to six layers for the extended 84-
hr to 192~hr range. This cholce is a compromise between an attempt to
employ a global system and operational schedules.

The vertical coordinate of the model is ¢ = 1 ~ P/Px, defined by
Phillips (1959), with a specification of layer locations described by
Brown (1974) and Phillips (1975). Finite differencing In the vertical
is applied. The choice of a quadratic conserving scheme, Arakawa and
Mintz (1974), was motivated by the belief that the adiabatic model's
equations should reproduce as many characteristics of the continuous
equations as possible, an attitude not shared by all modelers. A small
fringe benefit resulting from this choice arises during the preliminary
coding stages of the model by diagnosing programming errors through the
monitoring of conservative quantities.

The physical effects included in the model are influences of oro-
graphy, positlon~dependent surface friction, and subscale horizontal
dissipation parameterized by diffusion. The moisture cycle is based on
a mixing ratio formulation with large scale precipitation as well as
Ruo~type convection, Kuo (1965), and evaporation from the oceans. Sen-—
gible heating from underlying water 1s also included.

The time integration is semi-implicit, Robert (1969), with a moderate
time filter. During the initial experiments the semi-implicit backward
time Integration was advantageously employed to suppress high frequency
gravity-waves noilse. With the introduction of the normal modes initializa~
tion, Ballish (1980), the time integration was changed to semi-implicit
centered.

The Spectral Model was implemented operationally at NMC in 1980.
The Final Data Assimilation Cycle began using a spectral "guess" Iin June,
and the Large Scale forecast cycle became spectral in August. Each
implementation was preceded by extensive testing and evaluation. Results
of the Final Cycle tests can be found in a documentation by Kistler and
Parrish (1981). The comparisons with the 7L PE were documented by
Stackpole (1980). An evaluation of the Medium-Range 5-10 days Forecast
System was documented by Hughes (1981}.

It was demonstrated in all applications that the spectral method
has superior computational and gravitational nolse control, is particularly

advantageous in short forecasts used in a 6-hr assimilation cycle, and
produces forecasts similar to the 7L PE in the middle and lower tropo-—

sphere. At the jet stream level the spectral forecasts appear to possess
the ability to maintain intense speeds throughout the forecast period.
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The precipitation forecasts from the spectral model are however inferior
to the 7L PE and work to improve thelr spread and accumulation amounts
continues. (The primary tools for precipitation events for the U.S. area

are the Limited Fine Mesh and the Movable Fine Mesh models).

A summary of performance statistics and comparison with the LFM
model was prepared by the Systems Evaluation Branch and is displayed in
figure 6. This figure displays S1 scores of 500 mb and MSL pressure for

12 hr, 24 hr, 36 hr, and 48 hr. The graphs on the right display the
annual means for the years 1976 through 1980. The Spectral Model affects

the annual mean of 1980 only.
2. MODEL DESCRIPTION
Some of the variables appearing in the description are listed below:
3k = horizontal veloclty at layer k
ék =-§% at Interface {(level) k
¢ =1 - p/px, vertical coordinate
p = pressure
px = surface pressure
$, = geopotential at layer k
Ty = temperature at layer k
f = Coriolis parameter
Q ="yvertical unlt vector

V = Del operator

6 = potential temperature

K= R/cv
cp = speciflc heat of alr at comstant pressure
¢y = specific heat of air at constant volune

R = alr gas constant
(") = { ) at layer k (k = 1 corresponds to surface)
>
cy= vj-V in ps

K
(_) = z Aj( )j = finite difference vertical integral

3=l




h:s = layer sigma thickness (see filgure 1)
¥ = number of model layers ( = Levels - 1)
X = longitude; ¢ = latitude
a = radius of earth
( )y = spectral coefficient (only when both indices are letters)

stream function

=
I

¥ = veloclty potential
>
D=V + ¥V

() = square matrix

Q

n

angular velocity of the earth
Considering figure 1 for the location of layer and interface variables,
the formulation of the quadratic conserving vertlcal finite-differencing

scheme results in the following:

Momentum equation

>
v > e 1 . T > >
—k 4 . o 3 - %) + - =
A V)Vk+2ak[ck+1[ K+l W - V)]
~V®k—RTkVan*—fix$k. (1)
Thermodynamic equation
3Ty Lops (M 3 (T T Ty
e pgegr o2 05 (O o1, - 1) F T £ Tk-r)]
3t kR T 28y KM (“k—i-l krr K M1
o
= KTk(EE'+ vk'V)Qn Pks (23
b -
p W Pk=-c-D. (3)
61 is dilagnosed from
¢ X
3 = 6 D+ ¢ - A (D, + e, 4
Srag = O @ T O jzl ;@5 + ey) (4)
subject to boundary conditions
& =6 =0




The geopotential at layer k, ¢), is obtained from a simultaneous
system of equations specified by the similarity of the continuous and
discretized equations, see Appendix A. These are

C ™ m
2P X 4T 1—k“ll k= 2...K
-1 7 % T 2 [Tk—l[“k-l ] & e e
and
K K 6)
Yy A0, =9 +R ) AT,

ny
where ¢71 is the known and fixed surface geopotential. With ( ) denoting
a transpose, these K equations may be written as

v ¥
HS =BFT+0 or ¥ =at+ut @ (7)

in which H, B, and A are geographically constant square coefficient
matrices, and

& = {‘bl..-(bk], T = {Tl'..Tk)’ Ié) - [ 0---0@1}. (8)

According to Arakawa, we let level values be related to layer values
by prescribing

6 =14, * 6, 1) (9

to conserve 67 and similarly for other variables. Following Brown (1974)
and Phillips (1975), we set

p 1K A 1R
k = Pkl 1 4 (1) (10)

" (1) (By-By ) dp '

Y ) ap P

This definition of the layer pressure ensures that the total enthalpy in

each layer at each geographic location equals that in the atmosphere if
the latter has 96/30 = 0 in each layer.

The differentiated equations are derived by operating on the momentum
equation with V * and k*VgX.

Defining Aokl 1
Dy =V » v T = kVxv o/
k o k o (11)
Ny =z, + £ E = S(vrvy)
k k k k "k
we may write for k = 1...K
an 1 A
—K =~ o {“_E + cos¢ i
ot a cos“¢(a) ¢ (12)



Dy - __lw“?é (Eﬁk ~ cosd Eﬁk

L g2 in +F . 13
= parpyy S - ] v2 (o RT, o 0 Py E) (13)

These are the vorticity and divergence equations as derived by Bourke

(1974). Note, however, that equation (12) describes the absolute
vorticity. In these equations,

= . cosy O An P A A
Ak T"kUk + RTk a T + ZAk[Gk+1 (vk+1h Vk) + Gk(vk” Vk-—l)] (14)
,13inp, 1 2 v (15)
B, = n ¥y - BRI} g =5~ - ™ (814 (U pym Uk) + & (U~ Up_y)]
and the pseudo veloclty is defined by
(Uk, Vk) = cos¢(uk, Vk) . (16)

Tk = To,x + Ty ~ where T, ) is some constant temperature at layer k.

The thermodynamic equation is now written in a form suitable for a semi-
implicit integration, Robert (1969). The objective is to separate the linear
contribution of divergence terms from the rest of the terms appearing in the
thermodynamic equation. This is achieved by substituting ¢ from equation
(4) into equation (2). We now define the following notation:

1 .M 1 _ Tk 1)

w1= ?~.c.ﬂk-'—— cer M
2 Tkt
it T

'l'fz - 0 + 0 Trlri = "—k' P ']T‘.Ez(_ = ...-..ES-

: M1 TR (17)
1 1.0 0 1 10 0 1
H1 2 “1T2 - T1 cae Hk = ﬁka+l Tk e HK 0

2 2 .m0 _ 270 2 _ o0 _ 200

1 2

m, and m are fixed in time and space being functions only of k. Hﬁ

and Hy may vary with time, however. Using the above relations, equation
(2) may be written In the form

K
E_'I.'.kns +

st Sk T L Py Dy (18)

where




S = = V'V ITE -k T D+ x(T + 17} (¢ - <)

1 . - . 2 . .

- EK;{Uk+1(ﬂiTk+1" ) + & (Tf- 7 2T (19)
A . . k=

+ [ck+1c - j-—yilAj ijuk + (6, € - 1;1 AJ J}Hz]

- The matrix by 4 comes from terms in (2) which depend on the layer
divergences Dk

K 1 %
2 - HE
jzlbkijj o (5l+ m2) ] A0 Mty Dyl (209
K
- [K Tg_ zi (Gk+1Hk + U H_?)] E A D .

It is pointed out that this is not the only way to implement a semi~
implicit scheme. Another separation can be affected by linearizing the
thermodynamic equation's potential to kinetic energy conversion term
only.

The continuity equation (3), the divergence equation (13}, and the
thermodynamic equation (18) can now be treated semi~implicitly.,

At this point, the evaluation of the linear terms should be specified.
Let 1-1, T, T+l be three consecutive time steps and consider equation (18>
in finite difference form. We may write

%eran) = Fa-1) + 28e(¥00) + BloBrHly + L-o)Bx-DYI. @D

For & = 1/2, we obtaln the conventional semi-implicit scheme. Inte-
grations with this value of o were found to be rather nolsy. Efforts to
suppress initial data imbalances using initially strong horizontal dif-
fusion (Bourke, 1974) resulted in smoother "barographs."” Setting o =1,
we obtain the backward semi~implicit scheme and integrations with this
choice of ¢ are much smoother. The application of Machenhauer's nonlin-
ear normal modes initialization provides an excellent method of suppress-

ing the high frequency noise encountered with o= % and was employed in

a 10-case evaluation. The details of this method as implemented in the
present model are preseated in section 4. We complete the discussion of
the time integration by presenting the time filter, Robert (1965), applied
to all variables. It is of the form

FA(1) = BF(r) + (F(T-1) + F(t+1)) (1-B)/2,

where B = 0.92 and F(T+1) is the just predicted value of F. F*(r) is

the F(t=1) for the next time step. Since the codes are core-contained,
this implementation is stralightforward.

We can now turn to the various physical effects incorporated into
the model.




The influence of orography 1s modeled spectrally and will be presented
in the section treating the spectral form of the model's equations. How-
ever, the gridded field of mountains used by NMC's operations is passed
through a nine-point filter twice to remove excessive oceanic irregular-
ities when expressed spectrally. Using the raw gridded fields results
in somewhat inferior forecasts.

Lower boundary friction is simulated using Bourke's (1974) formu-
lation but with a geographically variable drag coefficient C4q, Cressman
(1960). This horizontal field resembles the orography distribution
with values of 1.29 x 1073 over water and reaching 8.5 x 10~3 MTS Units
over the Rocky and Tibet mountains.

Sensible heat transfer from the underlying surface is allowed only
over water regions. The rate of heating of the lowest model layer is
parameterized by the term on the right in the thermodynamic equation:

BT(L)eve = oot (cg + 7.10°5[W]) [WI(Bg - 8(1))/N, (22)
at

where h is the thickness of the bottom layer, I$| and 6 (1) are the wind
speed and potential temperature in that layer, and 64 1s the potential
temperature at the surface. The effect is seen to be selective, higher
by a factor of 2 to 3 under high wind conditions, Roll (1965). No
sensible heat from the continents i1s allowed at this stage.

Finally, subscale dissipation 1s parameterized by a horizontal
diffusion term of the form quF, where F is any of the prognostic
variables except the surface pressure. The value of k = 6x101° was
found satisfactory. It should be mentioned that the full model with
diabatic effects will be unstable in the absence of diffusion. The
numerical implementation of this effect is performed as a modification
to the nonlinear tendencies using lagged (t—-1) values of the appropriate
variables. No vertical diffusion is applied currently.

To complete the prognostic system, an equation for the moisture mixing
ratio Q is required. If we designate source and sink terms by S, and S5
we may write

EE-= Sr = Si 5 O
(23)

3Q 1 e .

In the last equation, the vertical finite differencing used in the
other model equations was introduced.

)



The main source of moisture arises from evaporation at the lower
boundary. To parameterize thils effect, we again adopt a formulation
that permits the process to be wind-speed selective. In this approach

_ (eg t 7.10“5]v|)|v| @
h

5
T

s - QM) (24)

where Qg 1s the mixing ratie corresponding to the sea surface temperature
specified by monthly normals. No evaporation from molst ground is allowed.

Moisture sinks result from convective and large-scale condensation
accumulated every time step at each point of the computational grid. This
grid arises in the Iimplementation of the transform method and appears to
be sultable for the incluslon of physical effects that do not lend them—
selves to simple spectral techniques. The transform method is described
in Appendix B.

The integration of the moisture equation proceeds in several steps.
A preliminary forecast 1s made in tandem with the other model variables.
The new values of mixing ratio and temperature are first subjected to a
Kuo~type convection process followed by a large—scale condensation
algorithm. Next, the modified temperature field is adjusted whenever
dry superadiabatic conditions are encountered. Under such unstable
conditions, the temperature field undergoes a dry convective adjustment
and the molsture content of a column is redistributed in the vertical
to reflect the adjusted temperature profile. The forecast step is
completed by incorporating the adjusted fields in the time filter.

The Kuo-type convection is an adaptation of Phillips' (1979) treat-
ment of organized molst convective processes In his Nested Grid Model.
Thig process 1s invoked in the presence of large molisture convergence
accompanied by a moist unstable lapse rate under moderately high
relative humldity conditions.

The highlights of the method consist of computing moilsture conver-
gence In the first four bottom layers of each column. If the computed
amounts exceed a specified threshold (10~7 ¢b/sec in the 30~wave 12-
layer version), a molst adlabat 1s computed for the column, assuming
that the first layer is saturated and using the preliminary pressure
and temperature prediction. An unstable region is then defined from the
bottom layer to the first layer which is warmer than a moist adiabatically
lifted parcel. If such an unstable column is found, the following sums
are computed from layer 2 to the top of the unstable part of the column

P
Q = 5% 2(g,04 = Q)boy
c P
- _p* _
Q2 —igm E(Tcld Tk)Ack

and




Qupg = Water/(Qy + Qg)
DTKUOy = Qeff(Teld — Tk)
DQKUOY, = Qeffdeld ~ 9kJ-

The above are equations (4.3) through (4.7) in Phillips {1979). The term
for water in the expression for Qeff is the moisture convergence in the
unstable column, q,14 and T,1q4 are the lifted parcel values of
saturation humidity and temperature at layer k, and L = 2.5 x 106 kJ/ton
is the latent heat. DTKUOy, when positive, represents the latent heat
release of convective precipitation and is added to the preliminary
temperature forecast. DQKUOy represents the revised value of the change
in specific humidity and is therefore added to the value at the previous
time step. To prevent convective precipitation when the environment is
unstable but relatively dry, condensed falling water is allowed to
evaporate into lower layers.

The large—scale precipitation algorithm compares the forecast value
of Q with a modified saturation value at forecast temperatures and
pressures 1n the sigma layers. 1In the event of supersaturation, the
excess moisture is allowed to condense and re-evaporate as 1t moves

through lower unsaturated layers. The predicted temperature field is
adjusted in accordance with the amount of latent heat released in the

process, and condensed moisture penetrating the bottom layer is
accumulated.

The modified saturation value is based on a specification proposed
by Hirano (personal communication), and used by Stackpole (Stackpole, 1978)
in the Nine-Layer Global Model. The modification consists of diminishing
the analytical saturation mixing ratio, depending on pressure and tempera-
ture aloue, by a reduction factor S depending on the layer's elevation.
Thus precipitation can be formed in a laver with relative humidity less
than 100 percent. The reductlon factor begins with a value of 1.0 at
the lowest layer, and diminishes to 0.8 at the top moist layer. In the
second and third layers, the factor is a function of the temperature at
the bottom layer accordiang to:

s, = 0.8 T < - 12.5°C.
S, = 0.8 = 0.005(0.015 T2 - 0.734 T - 11.6) -~ 12.5 < T < 18.5,
§p = 0.9 T > 18.5.

This highly empirical specification resulted in improved precipitation
forecasts compared to those obtained with a constant saturation criterion.
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3. THE PREDICTION EQUATIONS IN SPECTRAL FORM

In the following, all prognostic wvariables will be assumed to be
represented by spherical harmonlc series of the form

J o |e]+s
7 T
f=e] n—lﬁ|

igx

b

P (s1n¢)e (25)

where D% are the complex expansion coefficients, P% are Legendre poly-
nomials of the first kind, and % is the zonal wave number. The truncation
is rhomboidal, and there are (J+l)2 such coefficients for each of the
prognostic fields at each layer.

The diagnostic variables required at each time step are the geo-
potential, computed spectrally from the hydrostatic relation equatiom (7),
and the spectral temperature, as well as the velocity obtained spectrally
from the divergence and veorticity. It is noted that the pseudo-velocity
must be truncated in the manner

1 la|+n

(U.V) = (u,v)cosdp = J Pt vhpt (singye (26)
g=-g n=lg| " 0

to be compatible with the assumed truncation in the vorticity and
divergence series (Eliasen et al., 1970).

The differential prediction equations in spectral form have been
treated in detail by Bourke (1974). The procedure (see Appendix B) is to
isolate a particular tendency component of any of the history variables'
coefficients by multiplying the relevant equation by the complex conjugate
of the desired component, performing a surface integral on the sphere, and
using the orthonormality relations of the surface harmonics. The longitu-
dinal dependence 1s easily integrated out, while a meridional integration
by parts in conjunction with the application of the Legendre polynomials'
boundary values at the poles results in the following equations. With
layer subscripts now understood and Ag and By representing Fourler co-
efficients of A and B, we have

'il‘

] |- d 2y
3 Ny { P’ c052¢( -1 8 A p + B LOSW d¢ 12 JLOSQ dé, (27)
3
¥
) 2 - 3
e DT ——ee (1 £ B .4 A cosd —— cos¢ d
gt 1 £ a cos<d ( Ph P ) ¢ de
T (28)
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K 6
9 gl = Si(k) " }; by 5 Da() s

3T mn j=1
D 8 8 30
5t dn T T ¢y T Dpe G

In the above, equation (27) is the spectral form of the vorticity
equation (12), equation (28) is derived from the divergence equation
(13), equation (29) comes from the thermodynamic equation (18), and
equation (30) is the spectral form of equation (3) where q represents
the logarithm of the surface pressure. The above four equations are the
analogs of Bourke's (1974) equations (28), (29), (30), and (31), respec-—
tively. The moisture equation (23) is also spectrally represented as

55 on? s

where G, are the spectral components of the mixing ratio tendency.
Equations (27) and (31) are solved explicitly using centered time
differencing.

The spectral equations appropriate for semi-implicit implementation
will now be given. Defining the vectors

B s (Bt « il S = [Si(l),...,Si(K)}

x = (k... £w©), b= (D ... DXw) (32)
% 2

T= (T T,®)s T,= (T (D ..o T®),

we write, paralleling Bourke (1974)

Il

2 dpg

) 1 { 9 ,_3_1]

= — B _(K)P. + A (k)cos osd d
x, (k) !“ 3 coslil: 2( YR 2( Ycosd gy jcosd $ (335
2
Ayt mtatl) . -
+ P—g———'—ﬂn vl G q»]k )

where the last term represents the effects of orography, and
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Q>
(i

3D _ v n(otl) & 2 N

sr = X + ~“EQW“'§$ + R a4, To]; (34)
8% oy oy

9% = (35)
5t ST ED,

BqQ ) "\

E:f‘= -ty tAD (36)

Equations (34), (35), and (36) are finite differenced in time as described
in equation (21) with « =’;, and there are (J+1)2 such systems of equations.

4, NORMAL MODES INLTIALIZATION

This section describes the application of the normal modes Initialization
technique developed by Machenhauer (1977). The original implementation of
the method in the global model was done by Ballish as part of his doctoral
thesis. The hemispheric code was implemented by the writer after the
benefits of the method were experimentally established by Ballish. The
derivation below departs from Ballish's work only in the method of arriving
at the spectral linearized model and some aspects of the matrix computations.
The removal of the ambiguity in initializing the so-called composite varilable
is due to Ballish and constitutes a definite contribution.

A normal mode of the model's linear version is a solution of ¢, D, T,
and 4npx having the same temporal behavior. The number of such modes 1s a
function of the model's resolution, vertical and horizontal. TIn order to
determine all possible modal oscillations, a linear model version must be

first determined and cast in spectral form. For separabllity of varlables,
we consider perturbations about a resting atmosphere. The basic state
vertical temperature profile is specified by a U.3. Standard Atmosphere.

We begin with the linearized vorticity equation:

98 .~ vty . (38)
3t
Letting £ = v?¢°, D = V3", v’'= a2y, x~ = a%x, (39

equation (38) can be written as

3 . 3 9
Frall 20(D sing + 5%—+ coso 5?%- (40)
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The spectral form of equation (40) is obtained by substituting the
spherical harmonic expansions of the dependent variables, multiplying by
the conjugate harmonic of the desired component and integrating over the
sphere. After some manipulation, the spectral linear vorticity equation
in each model layer reads:

i
3T ig g ol & 2 __n L 0 4
_EE__ ZQ(R(H+1) n n ‘n Dn~1 n+1 €+l Dn+1) (ALY
We now turn to the linearized divergence equation
oD _ - .
E=R-fov—VZ(Q+RT09ynpk]. (42)

The geopotential ¢ in equation (42) does not include its orographic compon-
ent. The effects of mountains are introduced during the initialization
through the nonlinear part of the divergence tendency.

In order to simplify the vertical separation of variables we define
the composite variable

W= ®+RT, n px (43)

Using the notation in equation (39), the linear divergence equation
may be written

3 _ _ 50(- £ sind + X - coso %—] - v . (44)

Inspecting equations (40) and (41) and recognizing their analogy with
equation (44), the spectral form of the linearized divergence equation
may be written for each model layer:

2

aD 4 9 ntl 2 _& n 9 % n(ntl) ¢ (45)
n _ L nrl _n FLiLCL

TE- 29(n(n+1) nt 5 €n tn-1 & ol n+l €n+1) a wn ’

To close the system of equations, the linear thermodynamic and continuity
equations are needed. These are

T 5D (46)

and

a = -
5t n pi\ = = Z Aka = & D 5 (47)

Equations (46) and (47) can now be used to express the composite vari-
able W in terms of T and D. Consider the tendency of W. Using the defini-
tion (43) we may write

or = 3p T R Lg pp AmBg (48)
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Substituting from equations (46) and (47) and using the hydrostatic
relation ¢ = A T, equation (48) takes the form

Q
=t

i

= (A B - RT, 0)D. (49)

Qo
cr

The definition of the composite variable W thus allows us to deal
with only one vertically coupled equation. Let G=AB-RT, 4.

oW ~
Since EE'is linear in D, we may write

oy _ g 5t (50)
ot - "n -

Equation (50) closes the system of linearized model equations.

In order to effect a separation of variables it is natural to expand
all pertinent vertical column vectors in the basis vectors defined by the
eigenvectors of the vertical coupling matrix G. Let F = (Fy...Fy) be an
arbitrary vector and Yj = (le"'YjK)’ j = 1...K, be the eigenvectors of G.

We write the eigenvector expansion

P (51)
1 373

5]
I
Il o—11R

]

and need to specify the coefficients aj. Since G is not generally symmetric,
the Yj are not orthonormal; they are, %owever, orthogonal to the eigenvectors
YE, of G; Af the eigenvalues of G are distinct. Therefore

ag = (FYD/ (7D (52)

Equations (51) and (52) will be used to separate the linear solutions of
equations (41), (45), and (50) as well to express tendencies in the
initialization procedure. To complete the normal modes computation,
let —(gh)j be the eigenvalues of G. Equation (50) may then be written as

~ 0,
W =
R - . D i =1...K,
T (gh)y Pn > 3 (53)

and the separation of equation (50) has been accomplished.

We now note that equations (41), (45), and (53) are invariant under a
substitution of all column vectors by their eigenvector expansions. The
resulting equations hold for the expansion coefficients. If we assume
that a given mode behaves in time according to elWt  we may continue to
deal with equations (41), (45), and (53) and consider their solutions

multiplied by eiwt, the model's normal modes.
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The matrices arising from equations (41), (45), and (53) are not

symmetric and therefore do not possess orthonormal eigenvectors. The
scaling

EQ 9 DE be WQ
A _ _°n , DT = ibyg W= n (54)
n Vn (ntl) o At P av/gh

leads to symmetric matrices relating the primed variables.
scaling to equations (41), (45), and (53), we find

Applying this

L aC [ P n+l(m=11% _4n-0 n (n+2y73 g
i LI [T D + D > 55
2mi at n(n+l) nt | n (n+l' €a n-1 n+1( } 1 n+l] 2R
BD’2 +1 L 3 (n+2] ]
P LR n_n— Lo B
2mi 9t n(nt+l) n b ( J En£x1 ntl 0 n+l n+l (56)
Vn(n+l)gh
20a n’
9 i +1)gh .
et = Lolmtlgh o0 (57)
n a n
Equations (55), (56) and (57) may be written in matrix form:
~Qa .
3Cn =1 E (;’2 + i E D’g‘
3t i m 2 0
=% %) 3
‘“’nagtg_l*anJflEzC“l”n (58)
) )
WL iE D’E )
3t —3
Let
o
£
% r;u B2
X" = 2 = E E
25 D'nl, E=1E 2 24 (59)
"',Q; E
W n =3
then
S« 2
n-1g% (60)
ot
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The horizontal eigenvalue problem may now be written as
, |[E- Il =0 (61)

Note that matrix E depends on the eigenvalues of G and therefore equa-
tion (61) must be solved for each eigenvalue of matrix G. The symbol
—(gh)j is chosen to reflect the analogy of the shallow water problem
with a nonrotating earth version of the linear model. For & =0,
equations (44) and (50) combine to produce the wave equations with speed
/= gh. It is pointed out that for positive eigenvalues of G the semi-
implicit computation would be unstable. -

Some of the numerical results obtained for the vertical and horizontal
modes are displayed in table 1; this table displays the perlods of selected
horizontal gravity modes as functlons of vertical modes 1 through 8 and
varlous zonal wave numbers.

At this point, the tools required to implement a nonlinear normal
modes Machenhauer initialization have been assembled. The procedure
consists of the following steps: Initial data, computed in the pressure
to sigma step, are transferred to the model and the full tendencles of the
model's variables are calculated. These tendencles are transformed into
variables analogous to those used in the normal modes computation, namely
the composite variable, and scaled, primed variables. At this stage, the
transformed tendencles are expanded in terms of normal modes, precomputed
in permanent files, and the changes to gravity modes with periods less than
2 days are computed. These changesé AGp = =~ 15 Gy where G, represents a
given gravity mode with period T =-wﬂ are transformed back to the model's
variables and are used to adjust the input data. This process does not
ensure the vanishing of gravity modes' tendencles in a subsequent tendency
computation due to the nonlinear nature of the problem. It was experi-
mentally determined that two iterations using four vertical modes produce
acceptable changes in the initial conditions and very smooth surface
pressure time integrations. An illustration of the initialization stabi-
lizing effects 1s provided in figure 2. The surface pressure trace at a
point over the Rocky Mountains is shown with and without initialization.
Additional evidence of gravity waves actlvity in forecasts from raw and
{nitialized data 1s shown in figure 3. 1In this figure the RMS diver-
gence behavior demonstrates large changes with time when unbalanced initial
conditions are used. Torecasts made from Initialized data, portrayed by

the solid graph, show much smoother behavior.

It is pointed out that the ultimate criterion for including normal
modes initialization 1s the quality of the final forecast. The need for
initialization may therefore depend on the application. For short fore-
casts, used in data assimilation procedures with a 6-hr cycle, the bene-
fits of initialization may be more obvious than those obtalnable in
medium~range forecasting. In very short range forecasts, the adjustment
period is insufficient to allow a balanced state to be reached and
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oscillations in the surface pressure alone can cause rather large errors
in the model's product. In medium and longer range predictions, reason-
able balance can be achieved without initialization and gravitational
oscillations can be damped effectively. 1In such forecasts the beneficial
effects of initialization may be found in more appealing initial jet
structures, as well as in their maintenance with time.

An evaluation of 10 forecasts produced by a rhomboidal 30,12 level
spectral model using normal modes initialization was carried out by
NMC's Systems Evaluation Branch. The evaluation does not attempt to
investigate the influence of initialization alone, since its main purpose
was to compare the operational seven-layer primitive equations model
(7L PE) with the spectral system. It appears that the intensity and
maintenance of the jet stream 1s better handled by the spectral model
with normal modes initialization.

In June 1980 the Data Assimilation Final Cycle (D.A.C.) at NMC began
using a spectral model to provide a "first guess” to the subsequent
gridpoint analysis. The prelmplementation tests included normal modes
initialization and the combined product was deemed suitable for opera-

tional use in the D.A.C.
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7. APPENDIX A - THE ARAKAWA VERTICAL FINITE DIFFERENCING SCHEME

The Arakawa vertical finite differencing scheme is derived by writing
the energy equation in the continuous and discretized forms. The require-—

ment that both forms be similar leads to the finite differencing form of
the hydrostatic equation.

We begin with the continuous equations. The momentum equations in
flux form in the sigma coordinate system are

dp u o g B . 3 9 op

— e ] + — i = == /1 - =y = =
S Vep 5o (P ,u0) —%8.9) = 3=[(1 c)¢]%§ﬁ + p fv, (A1)
dp v + . 3 oo 8 s s o Sormn ononile . 5 o

ath R V.p*w +4- aG(P*VO) = - ay(p*Q)) - 30,[(1 U)&I’]ay p*..u . (A-Z)

The vertical finite differencing considerations are independent of the
choice of horizontal coordinates. Using the continuity equation

90, 9Py L
P, 'é‘(;"?' "é’g + Vepyv = 0, (A.3)

the kinetic energy equation is derived:

op k + 0 5 R 9
ai e 4 V.p*(&+ke)v + o P*U(¢+ke) = %E{Q 5%) = = ﬁ-%u % (A.4)
o

In equation (A.4), ke = 4(V°'V) is the kinetic energy per unit mass, p is

the pressure divided by 100 cb, and p its substantial derivative.

To complete the energy equation, we add the thermodynamic equation,

op.C_T d - dm
Pavp® 4 V'pwc v + gg-p*CpT o = p*cpe P i (A.5)

ot ¥

to the kinetic energy equation (A.4) to obtain

- -
Egﬁ(ke+cp1) 9 [¢ %%) + V‘P*(ke+CpT+®)V

It 90

(A.6)
dr % dpi- o,

3 £ ' Ly = o
+ '5;‘ p*o (ke'l'Cp J""'q)) = p*Epe dt 80 dt—]

R
In the last equations, e=-%, m=pkK K=%-. The vanishing of the right-

hand side in equation (A.6) is a consequence of the hydrostatic assumption.
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We now turn to the discretized equations using, at this point, values
at interfaces as well as layers. For layer k, we express (A.l) and (A.2)
as

p ., u e . 1
% k_ i .~ _ p'}'\' Lo . " 3
EE*. t Vepgupvi 4-5{ (“k+1 Oty ™ YUy 6k] = - E;{P*ékl
~ A A A A.7)
= b (@ - ap (
-A_k( et Ykor S0k 3 T Pafvi
ap, v . - 3
2Ky g vy, 4+ Py 5 -5 & g
3t PVk"E Ek [vk+1-0k+1 Vi Uk] T 5§{p*¢k): (A.8)
= -l:— n‘ 4 A ~ A 8'{2‘:’_,:
By (Sit1 Opan - S ¢k)§y = Pefy
where
5y, = L= g (A.9)
Defining
Tk
<6, (A.10)

and multiplying the thermodynamic equation CpTk .« We have
. .3 2 2 BEY.
hE_p*CpT = p*Cpikvk i p*Cp[ok+1 Tk+1 Ok'kd_
Ak (A.11)

~

ot PxC : o o s a
pmcpck(—*—ait‘ + \’I V'ﬂk] + —-%»l-:jl [Ok+l (TIH']‘“]{GR’%I} —-Uk(fk L 'ﬂ'kok)] .

The total energy equation is now obtained by combining equations (A.7),
(A.8), and (A.11) in a manner similar to the continuous case; it reads

8 ]:‘ A _r‘f__ 2 = ) Up 3 —t
‘a—t(kek & Cka)P* - Zk[‘i‘kﬂ-.l se Piet ®y - !\] + v P Vi {k 1h CpTyt @k]

C

I) : 3 -5 ) ~ : 1= ri] A~ ~
¥, * L» B e = Y .T o) =
- [Uk+1(2 Vie Vg O Tt §i) &, (i Ve Vi T St &)
k
L P L +c( V1 - k- ot o (B w5 )| A2
Ay Tt 1™ O k41 k k+17 - b I S U ™ 1\]]
+C o[a“+ m) + = [P+ T ) [, (S 8
pPe k\5t T VKT L T S [y (Spar= Si)

A A

- (3}1&1 ék—H - 4’]{81{)] .
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Equation (A.12) would be analogous to the continuous energy equation
(A.6) 1f the right-hand side vanished for all layers, and for all possible
O This would occur if

A

(Pk‘i"l - q’k + Cp[Tk+1 - 'ﬂ-k ek—i—l] =0 k=l,-..,K"rl (A.13)

~ ~

B - 4y + (T - mby) =0 k=2,...,K (A.14)

and for k = 1,...,K

B‘Tfk -]; Bp* ~ A
ogp 0l * Hevm) + g G Ve TS, - 8
(A.15)

~

(s S ~ BT = 0.

It can be shown that following Arakawa and writing O, = (9, + 6, ), 52
will be conserved in time, with similar results for other variables so
related. With this specification for the Interface potential temperatures,

equations (A.13) and (A.14) for k = 2Z,...,K reduce to

~ A Tfk__ T Tk._
&, - wk_l + Cp[Tk - WEWL {Jﬁ*ﬂWWMAJ} =0,

e k-1
. T i T {(A.16)
- 7 kl1k k-
¢k ék + CP[Tk - ——{;—-+ - 1]] = 0,
k k-1

$k and fk are easily eliminated from equations (A.16) leaving a
relation between layer temperatures and layer geopotentials., To close
the system, equation (A.15) is manipulated using the Brown (1974) and

Phillips (1974) specification of layer pressures

Ai""‘K A 1tk
~ Al (\"(]..]_K) d]C ;( ) (A‘l )

T

to obtain, for k = 1,...,K

l ~ ~ ~ ~ ~ o
Rl + 3 (o iy = 3 = (B B5J0 = 0. (A-18)

When equation (A.18) 1s summed over all layers and ¢y identified as the fixed
geopotential at the ground, we have

K K

RO) & T = ) 8 6 - , (A.19)
T Y T T

thus completing the finite difference version of the hydrostatic equation.

The transformation of the equations from flux form to the form usged
in the model's formulatilon 1s straightforward.
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8. APPENDIX B - BASIC SPECTRAL CONCEPTS

We are considering scalar functions of position on a sphere, expressed
as truncated spherical harmonic expansions. Let x=sin¢. Then for the
purposes of this report, the Legendre polynomials are defined as

(-1) (2n+1) (n-2) ! ¢ o\ &/2 de”n gt
n 2(n+2)! (1-x%) (I=x==)" . (B.1)
2 nt i dx

2+n
O [

The normalization implied by equation (B.l) is such that
1

) L,
J Pn(x) Pm dx = (Sm,m . (B.Z)
|

Here ¢ and n are the zonal and ordinal wave numbers respectively. The
generation of numerical values for P% is based on the recursion relation

R % [}
XPn(x) = €41 Pn+1(X) + & Pn—l(x)’ (B.3)
where
i
2 n?-2217
g = 5 (B.4)
= 4n2-1

The numerical computation is performed in double precision. For purposes
of differentiation, we use

%
dP )
. P . _ L L _ d Pn
(1-x°) e (n+1) Sn Pn“l nan+l Pn+1 = cos¢ —Eghu (B-5)

Relation (B.5) is employed in computations deriving wind components from
vorticity and divergence as well as in implementing the divergence, gradient,
and curl operators in the code.

Defining a surface spherical harmonic as

2 . s 153
Yn (¢;A) - Pn (51n¢) e ’
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it follows that

L £
& =
J Yn (Yn) ds 21, (B.6)

s

where S is the surface of the unit sphere and the asterisk denotes complex
conjugation.

A rhomboidal spherical harmonic expansion deplcted in figure 5 is
defined by

n’ {(B.7)

If H represents any physical variable, and is therefore real, it can be
shown that

L~ L a,
Hn = ) (Hn)ﬂ (B.8)

and it is sufficient to consider only coefficients with Q.Z 0.

In the Large Scale Cycle, the model derives 1its input data from the
Hough analysis (Flattery, 1967). 1In this analysis, Hough functions are
expressed as expanslons in Legendre polynomials and trigonometric func—
tions. In order to guarantee a correct transformation of the meteorological
variables from Hough to spherical harmoanic expansions, we require that
the two expansions produce identilcal series.

In the Hough analysis, height and pseudo winds V/cos¢ are expressed as
24 55

55

_ 0,0 S S

H= ) CoB> o+ yooy (C_costh = 8 sinfA)P . (B.9)
n=o L=1 n=f

Equation (B.9) 1s written with fixed upper summation limits, the plus
symbol is used for the height and u component of the wind while the minus
sign is used for v. Using equations (B.7) and (B.8) and equating coeffici-
ents with those in (B.9), the transformation for n=1...55. is

7 = ¢
T sl
(B.10)
2 1 6= &
= = + =1 24.
B =73 (cn sn)




Fquations (B.10) together with

55 5
? 28033 40 i

o_0
H= )} HP +2Reall ] | WP e
nee DD 4=] peg DB (B.11)

ensure a correct reproduction of the Hough data in the spectral model.

At this point, 1t should be mentioned that the Hough analysis is very
closely approximated by a J=24 rhomboidal expansion. In the higher resclu-
tion J=30 model, the unavailable higher modes are set initially to zero.

The two major ingredients of the transform method are the transition
from a series representation to a gridded field and its inverse. The
transform method, designed to compute the expansion of quadratic terms
appeatring in the forecast equations, is predicated on the ability to per-—
form these computations efficiently, thus circumventing the interaction
coefficients method used during the early stages of spectral techniques.
The ability to incorporate physical effects on the transform grid, effects
that do not otherwise lend themselves to a simple spectral treatment, is
a fortunate consequence.

In the following, the important detalls of the grid to spectral and
1ts inverse computation are examined. We begln with the grid to spectral

conversion.

Let the function H(4$,)) defined by equation (B.7) be given, and let
it be required to compute its expansion coefficlents Hj. Multiplying
(B.7) by (Y%)*, integrating over the unit sphere, and using the ortho-
gonality condition (B.6), we have

i

21 5
b L . 1 Roi =18
S on Fds = gy . (B.12
Y { H(¢’A)(Yn) ds = 5 J J H(¢,A)Pn(81n¢)e cospdgdr. . ( )
S o _IL—
2

The numerical evaluation of the integrals in (B.12) proceeds in two steps.
First, we define Fourier coefficients at the glven latitude:

21 .
£ (9) = 55 f (g, e

(B.13)
Q
2
and compute them using a Fast Fourier Transform. Next, let Gy =
be the Gaussian weights (Krylov, p. 108). (l—Xi) p! (Xk)2
Then, if y=y(x) 1s a polynomial of degree not exceeding 2N-1
il
2 1 N
[ y(4)cosddd = [ y(x)ydx = 'El Giy(xi)' (8.15)
l.T-
-1 : -1 .
2
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Using this method of integration, (B.12) may be accurately evaluated
numerically by

1
Hﬁ(x)Pi(x)dx -
-1

A

Hg(xi)Pi(Xi)Gf (8.16)

jl o~—1

i=1

Figure & deplcts the Gaussian grid defined for these integrations. The
zeros of Py determine the North-South definition of the grid, while an
equally spaced resolutlon is used for each latitude circle. The degree

of Py 1s determined by the power series the integrand is assumed to possess.
In the model, the accurate integration o§ ﬂuidfatic terms arising from a
rhomboidal truncation requires that N > , Machenhauer (1972},

Orszag (1970). For J=30, N=76, while for J=24, N=62 Gaussian latitudes.
Table 2 displays the Gaussian colatitudes and welghts in the Northern
Hemisphere for the J=30 case. It is noted that the poles do not appear

on the grid.

The computation of grid values from the spectral definition (B.7) is
straightforward and Is accomplished as follows. We first write equation
(B.7) as:

1 o0 LR e 193
H(s,h) = | B P+ 2Re b1 HP (sing) e (B.17)
n=o0 g=1 n=2

Next, the P, are computed for the required latitude, and the sums

g+]
5 L%, .
ut = 22 B P (sing) L =0 ... J (B.18)
n:

are evaluated. Equation {(B.17) can now be written as
J .
2 1A
H(g,n) = ) He (B.19)
=0

and its form suggests the application of a Fast Fourler Transform (FFT).
At this point, the FFT was mentioned in the computation of spectral

coefficients from gridded data, equation (B.13)}, as well as in the reverse
calculation, equation (B.19). 1In order to implement the FFT, we define

) 2Mijk

~ 1'1—]- I”
X(3) = ) X (k) e (B.20)

k=0

201k

l }1"'1 ~ _*IT;"L”

X(x) =y YOR() e .
j=o
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The X(j) and X(x) are said to be a discrete Fourier Transform pair.

A computer algorithm to implement equations (B.20) efficiently is referred
to as an FFT. A variety of such codes 1s now available and their optimiza-
tion is computer dependent. A documentation of the FFTs used in the spectral
system can be found in NMC Office Note 231.

We now return to equation (B.19) and note that A is as yet unrelated
to a grid. Inspecting equation (B.13) reveals that in order to perform a

numerical integration a specification of a grid is necessary.

It can be shown that if f(x) is a trigonometric polynomial of degree
not exceeding M-1

M-1 :
Al
£(x)dx = gﬂ-.i E {—4% (B.21)
j

is an exact quadrature.
In the case of equation (B.13) we anticipate trigonometric polynomials
of degree up to 3J, arising in quadratic terms. For exact integrations

we therefore specify M > 3J+1.

Following eq. (B.21), eq. (B.13) may now be written

_— -27i%]
A T B j=o0 ... (334D) (B.22)
j=o0
_an
and AX ERTE

Equation (B.22) is suitable for the application of an FFT. Since the
implementation of any FFT is most efficient when M is rich in factors, the

Gaussian Grid for J=30 was specified with 96 (>3x30+1) points while for
J=24 it is efficient to specify 80 (>3x24+1) points.

The application of an FFT to equation (B.19) can now be performed
by writing

21183
.

H(g,2) = | H e

o (B.23)

2
It is pointed out that H =o for 2>J and a single application of an FFT
to equation (B.23) produces values of H at all A, for the chosen latitude ¢.
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Vertical Planetary Tastest

Table 1.--GRAVITY WAVE STATISTICS.

Periods of

Slowest

Fastest

Number of Gravity Modes With
Periods in the Time Range:

Mode Wave Gravity Gravity Rossby
Number Number Mode Mode Mode 0-12 hrs 12-24 hrs 24~48 hrs 48+ hrs
1 0 1.48 19.3 46 2 0 0
1 1 1.42 33.1 28.6 47 2 1 0
1 5 1.23 6.85 73.1 50 0 0 0
1 15 917 2.35 192 50 0 0 0
1 24 747 1.48 300 50 0 0 0
2 0 2.98 28.9 42 4 2 0
2 1 2.86 70.4 36.3 43 6 0 1
2 5 2.48 14.2 76.0 49 1 0 0
2 15 1.86 4.79 193 50 0 0 0
2 24 1.51 3.01 300 50 0 0 0
4 0 10.0 64.4 12 28 6 2
[ 1 9.82 346 70.8 15 27 6 2
4 5 9,18 40.7 101 18 26 5 1
4 15 7.80 23.1 203 31 19 0 0
4 24 6.72 14.4 306 43 7 0 0
6 0 11.8 102 4 28 12 4
6 1 11.7 871 178 4 30 12 4
6 5 11.8 174 136 4 30 12 4
6 15 11.9 58.1 227 2 33 14 1
6 24 11.7 36.3 322 4 36 10 0
8 0 12.1 142 0 32 8 8
8 1 12.0 138 150 0 34 8 8
8 5 12.2 119 179 0 30 12 8
8 15 13.1 120 262 0 26 16 8
8 24 13.7 74.8 350 0 26 19 5

The above statistics are for a 12 layer, equal o-spaced model, with truncation of 24.
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Table 2.~-GAUSSIAN LATITUDES AND WEIGHTS FOR J=30.

Colatitude Weight

1 1.80 0.1267791E-02
2 4,13 0.2949103E-02
3 6.48 0.4627932E~02
4 8.83 0.6299179E~-02
5 11.18 0.7959846E-02
6 13.53 0.9607103E~02
7 15.89 0.1123817E~-01
8 18.24 0.1285028E~-01
9 20.59 0.1444073E~01
10 22.94 0.1600683E-01
11 25.30 0.1754593E~01
12 27.65 0.1905546E~01
13 30.00 0.2053285E-01
14 32.353 0.2197561E-01
15 34.71 0.2388132E-01
i6 37.06 0.2474761E~01
17 39.41 0.2607216E-01
18 41.77 0.2735275E-01
19 44,12 0.2858722E~01
20 46 .47 0.2977348E~01
2] 48.82 0.30909558~01
22 51.18 0.3199348E-01
23 53.53 0.3302347E-01
24 55.88 0.3398778E-01
25 58.24 0.3491475E~01
26 60.59 0.3577286E-01
27 62.94 0.3657064E-01
28 65.29 0.3730676E-01
29 67.65 0.3797996E~01
30 70.00 0.3858913E-01
31 72.35 0.3913322E-01
32 74.71 0.3961133E-01
33 77.06 0.4002265E~01
34 79.41 0.4036647E~-01
35 8B1.76 0.4064223E-01
36 84.12 0.4084946E-01
37 86.47 0.4098780E~01
38 88.82 0.4105704E-01
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MODEL STRUCTURE
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SURFACE PRESSURE TRACE
WITH AND WITHOUT INITIALIZATION
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THE RHOMBOIDAL TRUNCATION
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S1 SCORES STATISTICS
S1 comparisons of the Spectral and LFM for the continguous United States.
Grid used: 49-point lat/long grid. This is a subset of a 63-point grid
which covers the area between 65 west and 145 west longitude, and between
25 north and 55 north latitude. Gridpoint spacing is 5 degrees latitude
by 10 degrees longitude.
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NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of
Commerce on October 3, 1970. The mission responsibilitics of NOAA are to assess the socioeconomic impact
of natural and technological changes in the environment and to monitor and predict the state of the solid Earth,
the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical informa-

tion in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive
research results, major techniques, and special inves-
tigations.

CONTRACT AND GRANT REPORTS — Reports
prepared by contractors or grantees under NOAA
sponsorship.

ATLAS — Presentation of analyzed data generally
in the form of maps showing distribution of rainfall,
chemical and physical conditions of oceans and at-
mosphere, distribution of fishes and marine mam-
mals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS — Re-
ports containing data, observations, instructions, etc.
A partial listing includes data serials; prediction and
outlook periouicals; technical manuals, training pa-
pers, planning reports, and information serials; and
miscellaneous technical publications.

TECHNICAL REPORTS — Journal quality with
extensive details, mathematical developments, or data

listings.
TECHNICAL MEMORANDUMS — Reports  of

preliminary, partial, or negative research or technol-
ogy results, interim instructions, and the like.
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